fMRI activations in inferior temporal lobe during intelligible speech comprehension

The aim of this study was to use intelligible and unintelligible (spectrally rotated) sentences to determine if the vATL could be detected during a passive speech comprehension task using a dual-echo acquisition. A whole brain analysis for an intelligibility contrast showed bilateral superior temporal lobe activations and a cluster of activation within the left vATL.

Measuring directionality between neuronal oscillations of different frequencies

This measure is based on the phase-slope index (PSI) between the phase of slower oscillations and the power envelope of faster oscillations. Further, we propose a randomization framework for statistically evaluating the coupling measures when controlling for multiple comparisons over the investigated frequency ranges. The method was firstly validated on simulated data and next applied to resting state electrocorticography (ECoG) data. These results demonstrate that the method works reliably. In particular, we found that the power envelope of gamma oscillations drives the phase of slower oscillations in the alpha band.

Rapid and automatic speech-specific learning mechanism in human neocortex

We found a robust index of neurolexical memory-trace formation: a rapid enhancement of the brain's activation elicited by novel words during a short (~ 30 min) perceptual exposure, underpinned by fronto-temporal cortical networks, and, importantly, correlated with behavioural learning outcomes. Crucially, this neural memory trace build-up took place regardless of focused attention on the input or any pre-existing or learnt semantics.

Time-of-day effects in brain volume (brain volumes are larger in the morning) (!)

There was a statistically significant effect of time-of-day on the BPF change in MS clinical trial datasets (− 0.180 per day, that is, 0.180% of intracranial volume, p = 0.019) as well as the ADNI dataset (− 0.438 per day, that is, 0.438% of intracranial volume, p < 0.0001), showing that the brain volume is greater in the morning. Linearly correcting the BPF values with the time-of-day reduced the required sample size to detect a 25% treatment effect (80% power and 0.05 significance level) on change in brain volume from 2 time-points over a period of 1 year by 2.6%.

Identifying neuronal oscillations using rhythmicity

Here, we present lagged coherence, a frequency-indexed measure that quantifies the rhythmicity of neuronal activity. We use this method to identify the sensorimotor alpha and beta rhythms in ongoing magnetoencephalographic (MEG) data, and to study their attentional modulation. Using lagged coherence, the sensorimotor rhythms become visible in ongoing activity as local rhythmicity peaks that are separated from the strong posterior activity in the same frequency bands.

Inter-individual variability in cortical excitability and motor network connectivity following rTMS

We found that non-responders (subjects not showing an MEP increase of ≥ 10% after one iTBS block) featured stronger rsFC between the stimulated primary motor cortex (M1) and premotor areas before stimulation compared to responders. However, only the group of responders showed increases in rsFC and MEPs, while most non-responders remained close to baseline levels after all three blocks of iTBS. Importantly, there was still a large amount of variability in both groups.

Eve Marder's excellent essay on lecturing with chalk, not Powerpoint

I'm picking up my chalk tomorrow.

Teaching with chalk forces students to experience the material in real time. The tangible reality of chalk and board create the moment — remember Marshall McLuhan’s “The medium is the message” (1964)? As I draw or write on the board it gives my students the time to take notes. Images ready-made in PowerPoint or on overheads can come and go too quickly for students to process, and the images can be too complex, making their core principles difficult to discern. (Because I can’t draw very well, I can only make diagrams showing the essential points.) Teaching with chalk makes it easy to stop mid-thought or mid-diagram and ask the class what comes next, making students active participants in the developing logic of the lecture.

Questioning short-term memory and its measurement: Why digit span measures long-term associative learning

We cast doubt on this general approach in a detailed analysis of the basis for the robust finding that short-term memory for digit sequences is superior to that for other sequences of verbal material. Specifically, we show across four experiments that this advantage is not due to inherent characteristics of digits as verbal items, nor are individual digits within sequences better remembered than other types of individual verbal items. Rather, the advantage for digit sequences stems from the increased frequency, compared to other verbal material, with which digits appear in random sequences in natural language, and furthermore, relatively frequent digit sequences support better short-term serial recall than less frequent ones.

“Visual” cortex responds to spoken language in blind children

We find that “visual” cortices of young blind (but not sighted) children respond to sound. Responses to nonlanguage sounds increased between the ages of 4 and 17. By contrast, occipital responses to spoken language were maximal by age 4 and were not related to Braille learning. These findings suggest that occipital plasticity for spoken language is independent of plasticity for Braille and for sound.

Creating concepts from converging features in human cortex

In summary, this study has found that the top-down retrieval of object knowledge leads to activation of shape-specific and color-specific codes in relevant specialized visual areas, as well as an object-identity code within left ATL. Moreover, the presence of identity information in left ATL was more likely when both shape and color information was simultaneously present in respective feature regions. The strength of this dependency predicted the correspondence between top-down and bottom-up activity patterns in the ATL. These findings support proposals that the ATL integrates featural information into a less feature-dependent representation of identity.

Role of of the cingulo-opercular network in the maintenance of tonic alertness

The complex processing architecture underlying attentional control requires delineation of the functional role of different control-related brain networks. A key component is the cingulo-opercular (CO) network composed of anterior insula/operculum, dorsal anterior cingulate cortex, and thalamus. Its function has been particularly difficult to characterize due to the network's pervasive activity and frequent co-activation with other control-related networks. We previously suggested this network to underlie intrinsically maintained tonic alertness. Here, we tested this hypothesis by separately manipulating the demand for selective attention and for tonic alertness in a two-factorial, continuous pitch discrimination paradigm. The 2 factors had independent behavioral effects. Functional imaging revealed that activity as well as functional connectivity in the CO network increased when the task required more tonic alertness. Conversely, heightened selective attention to pitch increased activity in the dorsal attention (DAT) network but not in the CO network. Across participants, performance accuracy showed dissociable correlation patterns with activity in the CO, DAT, and fronto-parietal (FP) control networks. These results support tonic alertness as a fundamental function of the CO network. They further the characterization of this function as the effortful process of maintaining cognitive faculties available for current processing requirements.

The timing of regular sequences: Production, perception, and covariation

The temporal structure of behavior provides information that allows the tracking of temporal regularity in the sensory and sensorimotor domains. In turn, temporal regularity allows the generation of predictions about upcoming events and to adjust behavior accordingly. These mechanisms are essential to ensure behavior beyond the level of mere reaction. However, efficient temporal processing is required to establish adequate internal representations of temporal structure. The current study used two simple paradigms, namely, finger-tapping at a regular self-chosen rate (spontaneous motor tempo) and ERPs of the EEG (EEG/ERP) recorded during attentive listening to temporally regular and irregular “oddball” sequences to explore the capacity to encode and use temporal regularity in production and perception. The results show that specific aspects of the ability to time a regular sequence of events in production covary with the ability to time a regular sequence in perception, probably pointing toward the engagement of domain-general mechanisms.

Hierarchical organization of frontotemporal networks for the prediction of stimuli across multiple dimensions

Nice combination of DCM and Bayesian model selection here.

Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy.

Stimulus-independent semantic bias misdirects word recognition in older adults

Rogers & Wingfield in JASA:

Older adults' normally adaptive use of semantic context to aid in word recognition can have a negative consequence of causing misrecognitions, especially when the word actually spoken sounds similar to a word that more closely fits the context. Word-pairs were presented to young and older adults, with the second word of the pair masked by multi-talker babble varying in signal-to-noise ratio. Results confirmed older adults' greater tendency to misidentify words based on their semantic context compared to the young adults, and to do so with a higher level of confidence. This age difference was unaffected by differences in the relative level of acoustic masking.