Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography

While histological studies and conventional magnetic resonance imaging (MRI) investigations have elucidated the trajectory of structural changes in the developing brain, less is known regarding early functional cerebral development. Recent investigations have demonstrated that resting-state functional connectivity MRI (fcMRI) can identify networks of functional cerebral connections in infants. However, technical and logistical challenges frequently limit the ability to perform MRI scans early or repeatedly in neonates, particularly in those at greatest risk for adverse neurodevelopmental outcomes. High-density diffuse optical tomography (HD-DOT), a portable imaging modality, potentially enables early continuous and quantitative monitoring of brain function in infants. We introduce an HD-DOT imaging system that combines advancements in cap design, ergonomics, and data analysis methods to allow bedside mapping of functional brain development in infants. In a cohort of healthy, full-term neonates scanned within the first days of life, HD-DOT results demonstrate strong congruence with those obtained using co-registered, subject-matched fcMRI and reflect patterns of typical brain development. These findings represent a transformative advance in functional neuroimaging in infants, and introduce HD-DOT as a powerful and practical method for quantitative mapping of early functional brain development in normal and high-risk neonates.

 

Comparison of cortical folding measures for evaluation of developing human brain

We evaluated 22 measures of cortical folding, 20 derived from local curvature (curvature-based measures) and two based on other features (sulcal depth and gyrification index), for their capacity to distinguish between normal and aberrant cortical development. Cortical surfaces were reconstructed from 12 term-born control and 63 prematurely-born infants. Preterm infants underwent 2–4 MR imaging sessions between 27 and 42 weeks postmenstrual age (PMA). Term infants underwent a single MR imaging session during the first postnatal week. Preterm infants were divided into two groups. One group (38 infants) had no/minimal abnormalities on qualitative assessment of conventional MR images. The second group (25 infants) consisted of infants with injury on conventional MRI at term equivalent PMA. For both preterm infant groups, all folding measures increased or decreased monotonically with increasing PMA, but only sulcal depth and gyrification index differentiated preterm infants with brain injury from those without. We also compared scans obtained at term equivalent PMA (36–42 weeks) for all three groups. No curvature-based measured distinguished between the groups, whereas sulcal depth distinguished term control from injured preterm infants and gyrification index distinguished all three groups. When incorporating total cerebral volume into the statistical model, sulcal depth no longer distinguished between the groups, though gyrification index distinguished between all three groups and positive shape index distinguished between the term control and uninjured preterm groups. We also analyzed folding measures averaged over brain lobes separately. These results demonstrated similar patterns to those obtained from the whole brain analyses. Overall, though the curvature-based measures changed during this period of rapid cerebral development, they were not sensitive for detecting the differences in folding associated with brain injury and/or preterm birth. In contrast, gyrification index was effective in differentiating these groups.

Resting-state network complexity and magnitude are reduced in prematurely born infants

Premature birth is associated with high rates of motor and cognitive disability. Investigations have described resting-state functional magnetic resonance imaging (rs-fMRI) correlates of prematurity in older children, but comparable data in the neonatal period remain scarce. We studied 25 term-born control infants within the first week of life and 25 very preterm infants (born at gestational ages ranging from 23 to 29 weeks) without evident structural injury at term equivalent postmenstrual age. Conventional resting-state network (RSN) mapping revealed only modest differences between the term and prematurely born infants, in accordance with previous work. However, clear group differences were observed in quantitative analyses based on correlation and covariance matrices representing the functional MRI time series extracted from 31 regions of interest in 7 RSNs. In addition, the maximum likelihood dimensionality estimates of the group-averaged covariance matrices in the term and preterm infants were 5 and 3, respectively, indicating that prematurity leads to a reduction in the complexity of rs-fMRI covariance structure. These findings highlight the importance of quantitative analyses of rs-fMRI data and suggest a more sensitive method for delineating the effects of preterm birth in infants without evident structural injury.