Preference for audiovisual speech congruency in superior temporal cortex

Congruency effects are often seen in STS and nearby regions. Interesting, but I often wonder how related this is to what we do during everyday speech comprehension.

Auditory speech perception can be altered by concurrent visual information. The superior temporal cortex is an important combining site for this integration process. This area was previously found to be sensitive to audiovisual congruency. However, the direction of this congruency effect (i.e., stronger or weaker activity for congruent compared to incongruent stimulation) has been more equivocal. Here, we used fMRI to look at the neural responses of human participants during the McGurk illusion—in which auditory /aba/ and visual /aga/ inputs are fused to perceived /ada/—in a large homogenous sample of participants who consistently experienced this illusion. This enabled us to compare the neuronal responses during congruent audiovisual stimulation with incongruent audiovisual stimulation leading to the McGurk illusion while avoiding the possible confounding factor of sensory surprise that can occur when McGurk stimuli are only occasionally perceived. We found larger activity for congruent audiovisual stimuli than for incongruent (McGurk) stimuli in bilateral superior temporal cortex, extending into the primary auditory cortex. This finding suggests that superior temporal cortex prefers when auditory and visual input support the same representation.

Congruent visual speech enhances cortical entrainment to continuous auditory speech

Nice article that bears out predictions made by Peelle & Sommers (2015).

We demonstrate that the cortical representation of the speech envelope is enhanced by the presentation of congruent audiovisual speech in noise-free conditions. Furthermore, we show that this is likely attributable to the contribution of neural generators that are not particularly active during unimodal stimulation and that it is most prominent at the temporal scale corresponding to syllabic rate (2–6 Hz). Finally, our data suggest that neural entrainment to the speech envelope is inhibited when the auditory and visual streams are incongruent both temporally and contextually.

Prediction across sensory modalities: A neurocomputational model of the McGurk effect ($)

Here we assessed the role of dynamic cross-modal predictions in the outcome of AV speech integration using a computational model that processes continuous audiovisual speech sensory inputs in a predictive coding framework. The model involves three processing levels: sensory units, units that encode the dynamics of stimuli, and multimodal recognition/identity units. The model exhibits a dynamic prediction behavior because evidence about speech tokens can be asynchronous across sensory modality, allowing for updating the activity of the recognition units from one modality while sending top–down predictions to the other modality. We explored the model's response to congruent and incongruent AV stimuli and found that, in the two-dimensional feature space spanned by the speech second formant and lip aperture, fusion stimuli are located in the neighborhood of congruent /ada/, which therefore provides a valid match. Conversely, stimuli that lead to combination percepts do not have a unique valid neighbor. In that case, acoustic and visual cues are both highly salient and generate conflicting predictions in the other modality that cannot be fused, forcing the elaboration of a combinatorial solution.