On the importance of electrode parameters for shaping electric field patterns generated by tDCS

Here, we explore via finite element method (FEM) simulations based on a high-resolution head model how detailed electrode modeling influences the calculated electric field in the brain. We take into account electrode shape, size, connector position and conductivities of different electrode materials (including saline solutions and electrode gels). These factors are systematically characterized to demonstrate their impact on the field distribution in the brain.